Aubin Type Almost sharp Moser–Trudinger Inequality Revisited

نویسندگان

چکیده

We give a new proof of the almost sharp Moser–Trudinger inequality on smooth compact Riemannian manifolds based Moser Euclidean spaces and generalize it to with continuous metrics higher order Sobolev boundary under several conditions. These generalizations can be applied fourth Q curvature equations in dimension 4.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Sharp Moser-aubin-onofri Inequality for Functions on S2 with Symmetry

Here dw denotes the Lebesgue measure on the unit sphere, normalized to make ∫ S2 dw = 1. The famous Moser-Trudinger inequality says that J1 is bounded below by a non-positive constant C1. Later Onofri [6] showed that C1 can be taken to be 0. (Another proof was also given by OsgoodPhillips-Sarnack [7].) On the other hand, if we restrict Jα to the class of G of functions g for which e2g has centr...

متن کامل

A Sharp Inequality of Ostrowski-grüss Type

The main purpose of this paper is to use a Grüss type inequality for RiemannStieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose first derivative are functions of Lipschitizian type and precisely characterize the functions for which equality holds.

متن کامل

On the Best Constant in the Moser-Onofri-Aubin Inequality

Let S2 be the 2-dimensional unit sphere and let Jα denote the nonlinear functional on the Sobolev space H1,2(S2) defined by Jα(u) = α 4 ∫

متن کامل

A Sharp Bernstein-type Inequality for Exponential Sums

A subtle Bernstein-type extremal problem is solved by establishing the equality sup 06=f∈e E2n |f ′(0)| ‖f‖[−1,1] = 2n − 1 , where e E2n := ( f : f(t) = a0 + n X j=1 aje λjt + bje −λjt , aj , bj , λj ∈ R ) . This settles a conjecture of Lorentz and others and it is surprising to be able to provide a sharp solution. It follows fairly simply from the above that 1 e − 1 n − 1 min{y − a, b − y} ≤ s...

متن کامل

A sharp weighted Wirtinger inequality

We obtain a sharp estimate for the best constant C > 0 in the Wirtinger type inequality

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometric Analysis

سال: 2022

ISSN: ['1559-002X', '1050-6926']

DOI: https://doi.org/10.1007/s12220-022-00969-1